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Abstract.
A generalization of Richardson-Gaudin models to the rank-2 SO(5) and
SO(3,2) algebras is used to describe systems of two kinds of fermions or
bosons interacting through a pairing force. They are applied to the proton-
neutron isovector pairing model and to the Interacting Boson Model 2, in
the transition from vibration to gamma-soft nuclei, respectively. In both
cases, the integrals of motion and their eigenvalues are obtained.

1 Introduction

The pairing interaction has been used to describe many properties of strongly
correlated many-body quantum systems. In the early sixties, Richardson [1]
showed how to exactly solve the pure pairing hamiltonian for fermions and
bosons including non-degenerate single-particle orbits. Independently, Cam-
biaggio, Rivas and Saraceno [2] demonstrated that the pairing hamiltonian was
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integrable, which means that as many integrals of motion as degrees of freedom
can be found. In 2001, Dukelsky, Esebbag and Schuck [3] showed how to gener-
alize Richardson’s solution making use of analogous work by Gaudin [4] for spin
models. Since then, the Richardson-Gaudin (RG) models have been applied to a
wide variety of systems in nuclear, condensed-matter and atomic and molecular
physics. They have the advantage that they can be used to exactly obtain such
physical quantities as energies and occupation probabilities beyond the diago-
nalization limits, while furthermore serving as tests or initial guesses for other
many-body approaches. Some specific examples of applications have been to
ultrasmall superconduction grains [5], nuclear superconductivity, Bose-Einstein
condensates [6] and to mixed systems involving atoms coupled to molecular
dimers in the presence of a Feshbach resonance [7].

All these models are based on several copies of the rank-1 SU(2) and SU(1,1)
algebras, each copy representing an orbit. The integrals of motion and their
eigenfunctions and eigenvalues depend on a set of parameters (pair energies)
that satisfy a system of non-linear coupled equations. In 2002, Asorey, Falcetto
and Sierra [8] found a set of L integrals of motion and their corresponding eigen-
values for a system of L copies of a Lie algebra of arbitrary rank r. They depend
on L plus r free parameters, and can be written in terms of as many families of
spectral parameters as the rank of the algebra. These families of spectral pa-
rameters satisfy a system of generalized Richardson equations. Independently,
Usveridse [9] found the eigenfunctions by making use of the Gaudin algebras.

In this presentation, we study the rank-2 algebras SO(5) and SO(3,2). For a
suitable representation of the generators of the two algebras, we obtain the in-
tegrals of motion, their eigenvalues, the associated eigenfunctions and the gen-
eralized Richardson equations for the two families of spectral parameters. A
specific linear combination of the integrals of motion together with a suitable
choice for the free parameters leads us to two hamiltonians that have been used
in models of nuclear physics, the proton-neutron isovector pairing model and the
Interacting Boson Model-2 in the transition from vibrational to gamma-unstable
nuclei. In both cases, the hamiltonans that result permit the inclusion of symme-
try breaking terms, isospin symmetry in the SO(5) model and F-spin symmetry
in the SO(3,2) model. For both of the models, we obtain the results for states
with an arbitrary number of unpaired particles. In the SO(5) case, we report
a study of the dependence of the spectral parameters on the isospin symmetry
breaking term in the T=0,1 and 2 channels, and present some results for the nu-
cleus 64Ge assuming a 40Ca core and a pf + g9/2 valence space. In the SO(3,2)
case we report a study of the effect on the spectra of adding a g or an f boson.

2 Integrals of motion and its eigenvalues for a system of L copies
of a rank-r Lie Algebra

The RG models are based on several copies of a Lie Algebra. For the i-th copy
we can write the generators in the Cartan decomposition. On one hand, this in-
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cludes the operators that commute with one another (weight operators), which
form the so called Cartan subalgebra. The number of these operators (which
we will denote by Ha) is the rank of the group. The rest of the operators,
Eα, are expressed in such a way that they satisfy the commutation relation-
ship [Ha

i , Eα
i ] = αaEα

i . These operators are called the ladder operators; half
of them are raising operators E+α, and the other half lowering operators, E−α,
satisfying E−α = (E+α)+. In the SU(2) case, the Cartan or weight operator is
Jz and the raising and lowering operators J+, J−. The α’s are vectors (called
roots) that play the role of structure constants. There are as many independent
roots as the rank of the algebra, so in our case we only need two roots to define
the algebraic quantities.

An important algebraic concept is the highest weight state, which defines
each irreducible representation. This is a state annihilated by all the raising
operators: Eαk

i |Λi >= 0 ∀αk. They have the property of being eigenstates of
the Cartan operators.

With these definitions, the L integrals of motion for a system of L copies of
a Lie algebra in the rational model are:

Ri =
∑

i′ "=i

Xi · Xi′

zi′ − zi
+ ξaFabh

b
i , (1)

whereXi ·Xi′ is the scalar product of the generators, Fab is a matrix that defines
the algebra [10] and ha

i are the Cartan operators in the Chevaley basis [10].
These integrals of motion depend on L+r free parameters: zi, i = 1...L and
ξa, a = 1...r.

For each irreducible representation, labeled by the Dynkin labels [10] of the
highest weight state Λi, the eigenvalues are:

ri = ξ · F · Λi +
∑

i′ "=i

Λi′ · F · Λi

zi′ − zi
− 1

2

r∑

a=1

Ma∑

α=1

Λi|αa|2

Ea
α − zi

, (2)

where Ea
α are the ’r’ families of spectral parameters that must satisfy the

Richardson equations. In our case, there are two families, which we denote
by {eα} and {ωγ}. As they determine the wave function and all the observables
obtained from the ri, we will study their behavior in terms of the free parameters
of the model.

3 The isovector proton-neutron pairing model

3.1 generators, integrals of motion and eigenvalues

A suitable representation for the generators of the i-th copy of the SO(5) al-
gebra in terms of the creation and annihilation operators of protons p+

i /pi and
neutrons, n+

i /ni is:
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T 0
i =

1
2
(p+

i pi + p+
ī
pī)−

1
2
(n+

i ni + n+
ī

nī) T+
i =

1√
2
(p+

i ni + p+
ī
nī) (3)

b+
−1i = n+

i n+
ī

b+
0i =

1√
2
(n+

i p+
ī

+ p+
i n+

ī
) b+

+1i = p+
i p+

ī
(4)

Hi =
1
2
(N̂i + N̂ī) − 1 (5)

and the corresponding hermitian-conjugates of all the raising operators. Opera-
tors (3) form the SU(2) isospin subalgebra. The operators in (4) create a pair of
particles in time-reversed states. The two Cartan generators are T 0

i and Hi, and
N̂ is the number operator.

Associating each copy i to an orbit in the spherical shell model basis i ≡ jm
and choosing a specific linear combination of the integrals of motion, we obtain
the hamiltonian [11]

H =
∑

j

εj(Nj + ∆Npj) +
g

2
T · T + g

∑

µ,jm,j′m′

b+
µ,jmbµ,j′m′ . (6)

The first sum is the single-particle energy term. Note that it includes a term
∆Npj , which modifies the energy of the protons and thus breaks isospin sym-
metry. The second sum is the isovector pairing interaction. The free parameters
are the single-particle energies εj , the coupling constant g, and the∆ parameter,
which as just noted measures the isospin symmetry breaking.

The same linear combination of the eigenvalues of the integrals of motion
gives the energy eigenvalues of the hamiltonian (6),

E =
∑

j

εj
[νj

2
(2+∆)−∆τj

]
+

M∑

α=1

eα +
∆
2

M+T0+t∑

β=1

ωβ +
g

2
T0(T0−1) , (7)

where νj is the seniority of the j shell (the number of unpaired particles) and τj

the reduced isospin (i.e, the isospin of the unpaired particles).
The first sum gives the single-particle energy contribution of the unpaired

particles. The third, as it is proportional to∆, has to do with the isospin symme-
try breaking. As the second sum gives the energy of the paired particles and is a
sum over the various pairs, the eα parameters can be interpreted as pair energies.

3.2 Study of the spectral parameters in terms of isospin symmetry
breaking

To show how the spectral parameters behave as a function of the isospin breaking
term ∆, we present in figure 1 three solutions of the Richardson equations for
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Figure 1. Spectral parameters eα (blue dashed lines) and ωγ (red solid lines) for a system
of two protons and two neutrons in two shells (j0 = 1/2, j1 = 3/2) with energies
ε0 = 0, ε1 = 1, for a coupling constant g=-1. Left panels are the real part and right
panels the imaginary part, except in the T=1 case where all parameters are real. Only
the lowest energy states of the hamiltonian (6) are represented for each value of T. These
energies are plotted in the sixth panel.

a system of two protons and two neutrons in two shells in the seniority zero
subspace. The solutions are labeled by the isospin in the ∆ → 0 limit (for
∆ '= 0, isospin is not a good quantum number). It is interesting to remark that
in all cases the parameters are either real or form complex-conjugate pairs, so
that the sums that appear in the expression of the energy (7) are real. Another
important feature is that in the ∆ → 0 limit only M-T of the ω parameters are
finite. The rest diverge, but as their contribution to the energy has the form
∼ ∆

∑
γ ωγ the energy remains finite.

3.3 Numerical calculations for 64Ge with a 40Ca core in a pfg9/2 valence
space

An important feature of RG exactly-solvable models is that they permit calcu-
lations beyond the diagonalization limits. As an example, we present numerical
results for 64Ge, with a 40Ca core (i.e., 12 valence protons and 12 valence neu-



6B. Errea, S. Lerma, J. Dukelsky, S. Dimitrova, P. Van Isacker, S. Pittel, V. G. Gueorguiev

Figure 2. Complex-plane representation of the pair energies e (blue circles) and ω pa-
rameters (red circles). Left panels correspond to g=-0.05 MeV and right ones to g=-
0.5 MeV. The values of the single -particle energies are εf7/2 = 0.00 MeV, εp3/2 =
6.00MeV, εf5/2 = 6.25MeV , εp1/2 = 7.1MeV, εg9/2 = 9.60MeV

trons) for a valence space built from the orbits of the pf shell and the g9/2 orbit.
In figure 2, we plot the spectral parameters in the isospin symmetric limit

for two values of the coupling constant, g=-0.05 MeV (weak coupling) and g=-
0.5 MeV (strong coupling), for the ground state (T=0). Blue circles represent
the pair energies eα, red circles the ωγ parameters and the squares are twice the
single-particle energies of the first three orbits. In the weak coupling limit, there
are as many eα parameters as the degeneracy of the first two shells with a real
part roughly twice the single-particle energy. Physically it means that particles
are filling orbits as in a non-interacting system. As the interaction increases, the
real part of the e parameters decreases, and therefore the energy also decreases:
correlations make the system more bound. They also expand in the complex
plane. The ω parameters are always intertwined with them.

As was mentioned these spectral parameters determine not only the energies
but also the wave functions and such physical observables such as occupation
numbers. Such calculations can be found in [11].

4 The Interacting Boson Model-2

The Interacting Boson Model (IBM), developed by A. Arima and F. Iachello
[12], describes the quadrupole-quadrupole excitations of even-even nuclei in
terms of a system of s and d bosons that microscopically represent fermion pairs.
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It has proven to be very powerful in the prediction of properties of many nuclei.
The IBM-2 version [13] distinguishes between proton pairs (π bosons) and neu-
tron pairs (ν bosons), and thus introduces a new quantum number, F spin, which
is similar to isospin but for bosons rather of fermions. It has been found that
F-spin SU(2) symmetry is approximately preserved in nuclei.

The most general hamiltonian of this model has the form:

H = επNdπ + ενNdν + VQQ + M , (8)

where the first two terms are the single-particle energies, and VQQ is the
quadrupole-quadrupole interaction, which has the form:

VQQ = κππQ2
π + κπνQπQν + κννQ2

ν . (9)

The quadrupole operator, Qρ, depends on a free parameter χρ,

Qρ(χρ) = d+
ρ sρ + d+

ρ sρ + χρ

[
d+

ρ d̃ρ

]
. (10)

In the F-spin symmetry limit, the IBM-2 hamiltonian has three dynamical
symmetries, SU(3), O(6) and U(5), that describe axially symmetric deformed
nuclei, gamma-unstable nuclei, and vibrational nuclei, respectively. In the latter
two cases, the value of the parameter χρ is zero, both for the π and ν bosons.

The term M in (8) is called the Majorana interaction, and usually has the
form M = ζ[Fmax(Fmax + 1) − F 2]. In the F-spin symmetry limit it is found
that states with F = Fmax, called maximally symmetric states (SS), are the
lowest in energy. These states are the only ones that appear in the IBM1 model,
and they are completely symmetric under the interchange of π and ν bosons.
The Majorana term splits the energy of the states with F < Fmax, the so called
mixed symmetry states (MSS).

4.1 SO(3,2): Generators and Hamiltonian

The generators that close the SO(3,2) commutation relationships for each l-shell
in terms of the creation/annihilation operators of bosons (l+ρ /lρ), ρ = π, ν are:

F 0
l =

1
2
(Nlπ − Nlν) F+

l = l+π · lν F−
l = l+ν · lπ (11)

b+
−1l = (−1)l/2l+ν · l+ν b+

0l = (−1)l/2l+π · l+ν b+
0l = (−1)l/2l+π · l+π (12)

b−1l, b0l, b1l H2
l =

1
2
(N̂πl + N̂νl + Ωl) (13)

As in SO(5), the first three close the F-spin SU(2) subalgebra. Furthermore,
b+
µl creates a pair of bosons in time reversal states, and H2

l together with F 0
l

form the Cartan subalgebra.
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By taking a particular linear combination of the integrals of motion (1), we
obtain the hamiltonian [14]:

H =
∑

l

εl(Nπl + Nνl + ∆Nπl) −
g

4

∑

l<l′

l′+l∑

L=|l′−l|

(−1)L

(QL
lν l′ν

+ QL
lπl′π

) · (QL
l′ν lν + QL

l′πlπ ) , (14)

with
QL

lρl′ρ
= (l+ρ l̃′ρ − (−1)l+(l+l′)/2l′+ρ l̃ρ)L . (15)

In the case of l=0,2,this hamiltonian takes the form

H = εd(Nπd + Nνd + ∆Nπd) −
g

4
(Qπ + Qν)2 , (16)

where Qρ has the same form as the IBM-2 quadrupole operator (10), but with
χρ = 0. Thus, while (16) is an IBM-2 hamiltonian, it is not the most general
one. It is limited to describe the transition from U(5) to O(6). Furthermore, it
has several other specific features, namely that the quadrupole-quadrupole inter-
action that enters is an F-spin scalar and that it contains a term proportional to∆
that when active breaks F-spin symmetry. Lastly, it does not contain a specific
Majorana term. However, in the F-spin symmetry limit (∆ → 0) a Majorana
term can be added while maintaining the exact solvability of the model.

The key point of this class of RG models is that we can add other bosons
degrees of freedom and still solve the problem exactly, going beyond what is
possible with diagonalization methods. In particular we can include a g-boson
(l=4), which has been included, for example, to explain some intruder states in
some nuclei such as 192Os [?] or an f-boson (l=3), which has been introduced
to explain negative parity bands in some isotopes.

4.2 Energy levels. The effect of adding a g or an f boson

In order to study the effect on the spectra of adding other bosons degrees of
freedom, we plot in figure 3 the spectra of the s-d hamiltonian (16) (upper panel)
and the sdg hamiltonian in (14) (botton panel), as a function of the coupling
constant g, for a system of 10 π bosons and 10 ν bosons. The calculations were
carried out in the F-spin symmetry limit, for ∆ → 0. Each level is obtained
by giving different values to the seniorities, and they are multiplets of angular
momentum, specified by the labels. Solid lines represent SS and dotted and
circled lines represent MSS with F = Fmax − 1, which as we noted earlier can
be shifted in energy by adding a Majorana term. It can be seen that in the sd
case, the g=0 limit corresponds to a vibrational (U(5)) spectrum, whereas with
increasing g a transition to O(6) takes place. In the sdg case, many more possible
values for JP appear. In the figure thicker solid and circled lines correspond to
SS and MSS, respectively, with unpaired g bosons. Most of the states that also
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Figure 3. Energy levels for a system of 10 π bosons and 10 ν bosons of the sdg hamil-
tonian (14) (bottom panel) compared to those of the sd hamiltonian (16) (upper panel),
as a function of the coupling constant g. The values of the single particle energies are
εs = 0 MeV , εd = 1 MeV and εg = 1.6 MeV . Except for JP = 2+, only the first
excited state of each seniority is shown. Only those mixed symmetry states up to total
seniority two are presented. The meaning of the different types of lines is explained in
the text.

appear in the sd case are relatively unaffected by the addition of the new boson
degree of freedom, except in some cases such as the first 0+ state or the second
2+
2 state, plotted in red. For these states, in the sd case the energy goes up with
the coupling constant g, while in the sdg case the energy flattens out.

5 Summary and Conclusions

We have generalized the exactly solvable Richardson-Gaudin models to two al-
gebras of rank-2, SO(5) and SO(3,2). We have obtained the integrals of motion
and its eigenvalues, which are written in terms of two families of spectral para-
meters that must satisfy a system of non-linear coupled equations, the so-called
Richardson equations. By choosing appropriate linear combinations of the in-
tegrals of motion, we have derived two pairing hamiltonians for two kinds of
particles, fermions in the SO(5) case and bosons in the SO(3,2) case.

The SO(5) algebra gives rise to an isovector proton-neutron pairing model,
but which includes a one-body term that breaks isospin symmetry. We have
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studied the dependence of the spectral parameters as a function of this term. We
have also presented some numerical results for 64Ge with a 40Ca core within
the valence shells fpg9/2, which could not have been done using numerical di-
agonalization methods.

One possible representation of the SO(3,2) algebra gives rise to a specific
version of the Interacting Boson Model-2 in the transition region between the
dynamical symmetries U(5) and O(6). The hamiltonian we obtain does not have
a Majorana term, but in the F-spin symmetry limit we can add one without af-
fecting its exact solvability. This model involves only two copies of the Lie
algebra, one with l = 0 (the s boson) and one with l = 2 (the d boson). Other
boson degrees of freedom have also been introduced in extended versions of the
IBM-2 to explain intruder states (an l = 4 g boson) or negative-parity bands (an
l = 3 f boson) that appear in nuclei. We have studied the effect of taking the g
boson into account within an exactly solvable SO(3,2) context by comparing the
energy levels for an sd hamiltonian with an sdg hamiltonian for both maximal
symmetry states and mixed symmetry states.

The models that we have developed are not limited, however, to proton-
neutron fermion or boson models of nuclei. Any physical problem involving two
species of particles in which pairing is dominant can be modelled in this way. In
particular, the bosonic case could be applied to problems involving a mixture of
97Rb atoms in the hyperfine states |F = 1,Mf = 1〉, |F = 1,Mf = −1〉.

References

[1] R. W. Richardson, Phys. Rev. Lett. 3, 277 (1963); Phys. Rev. 141, 949 (1966).
[2] M. C. Cambiaggio, A. M. F. Rivas and M. Saraceno, Nuc. Phys A 424, 159 (1997)
[3] J. Dukelsky, C. Esebbag and P. Schuck, Phys. Rev. Lett 86, 4207 (2001)
[4] M. Gaudin, J. Physique 37, 1087 (1976).
[5] G. Sierra, J. Dukelsky, G. G. Dussel, Jan von Delft, and Fabian Braun, Phys. Rev. B

61, 11890 (2000).
[6] J. Dukelsky and P. Schuck, Phys. Rev. Lett 86, 4207 (2001).
[7] J. Dukelsky, G. G. Dussel, C. Esebbag and S. Pittel, Phys. Rev. Lett. 93, 050403

(2004).
[8] M. Asorey, F. Falceto, and G. Sierra, Nucl. Phys. B 622, 593 (2002).
[9] A. G. Usveridze, Quasi-Exactly Solvable Models in Quantum Mechanics (Institute

of Physics, Bristol, 1994).
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